Interannual and Seasonal Variability of the Surface Energy Balance and Temperature of Central Great Slave Lake

This paper addresses interannual and seasonal variability in the thermal regime and surface energy fluxes in central Great Slave Lake during three contiguous open-water periods, two of which overlap the Canadian Global Energy and Water Cycle Experiment (GEWEX) Enhanced Study (CAGES) water year. The...

Full description

Bibliographic Details
Main Authors: Wayne R. Rouse, Claire M. Oswald, Jacqueline Binyamin, Peter D. Blanken, William M. Schertzer, Christopher Spence
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2002
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.575.7772
http://www.colorado.edu/geography/blanken/PDF Copies of my papers/Interannual and seasonal variability of the surface energy balance and temperature of central Great Slave Lake.pdf
Description
Summary:This paper addresses interannual and seasonal variability in the thermal regime and surface energy fluxes in central Great Slave Lake during three contiguous open-water periods, two of which overlap the Canadian Global Energy and Water Cycle Experiment (GEWEX) Enhanced Study (CAGES) water year. The specific objectives are to compare the air temperature regime in the midlake to coastal zones, detail patterns of air and water temperatures and atmospheric stability in the central lake, assess the role of the radiation balance in driving the sensible and latent heat fluxes on a daily and seasonal basis, quantify magnitudes and rates of the sensible and latent heat fluxes and evaporation, and present a comprehensive picture of the seasonal and interannual thermal and energy regimes, their variability, and their most important controls. Atmospheric and lake thermal regimes are closely linked. Temperature differences between midlake and the northern shore follow a seasonal linear change from 68C colder midlake in June, to 68C warmer in November–December. These differences are a response to the surface energy budget of the lake. The surface radiation balance, and sensible and latent heat fluxes are not related on a day-to-day basis. Rather, from final lake ice melt in mid-June through to mid- to late August, the surface waters strongly absorb solar radiation. A stable atmosphere dominates this period, the latent heat flux is small and directed upward, and the sensible heat flux is small and directed downward into the lake.