Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica

primary source of water to streams, lakes, and associated ecosystems. To understand geochemical fluxes and ecological responses to past and future climates requires a physically based energy balance model. We applied a one-dimensional model to one site on Taylor Glacier using 11 years of daily meteo...

Full description

Bibliographic Details
Main Authors: Matthew J. Hoffman, Andrew G. Fountain, Glen E. Liston
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2008
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.575.5249
http://glaciers.pdx.edu/fountain/MyPapers/HoffmanEtAl2008_SurfaceEnergyBalanceTaylorGlacier.pdf
Description
Summary:primary source of water to streams, lakes, and associated ecosystems. To understand geochemical fluxes and ecological responses to past and future climates requires a physically based energy balance model. We applied a one-dimensional model to one site on Taylor Glacier using 11 years of daily meteorological data and seasonal ablation measurements. Inclusion of transmission of solar radiation into the ice was necessary to accurately model summer ablation and ice temperatures. Results showed good correspondence between calculated and measured ablation and ice temperatures over the 11 years. Ablation (18 cm a1) was dominated by sublimation with very few occurrences of melt (42 days during 11 years). Results also indicated that above freezing air temperatures did not necessarily result in melt and, in turn, melt occurred during subfreezing air temperatures under some conditions. For air temperatures near freezing, low wind speed was critically important for melt initiation. According to the model, subsurface melt, away from rocks and sediment in the ice, occurred three times more frequently than surface melt; occurs no deeper than 50 cm below the glacier surface; and was small, never exceeding 8 % by mass. The magnitude of subsurface melting and the energy balance indicate that Taylor Glacier ice is intermediate in optical properties between snow and blue ice.