Arctic circles, domino tilings and square Young tableaux

The arctic circle theorem of Jockusch, Propp, and Shor asserts that uniformly random domino tilings of an Aztec diamond of high order are frozen with asymptotically high probability outside the “arctic cir-cle ” inscribed within the diamond. A similar arctic circle phenomenon has been observed in th...

Full description

Bibliographic Details
Main Author: Dan Romik
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.568.8297
Description
Summary:The arctic circle theorem of Jockusch, Propp, and Shor asserts that uniformly random domino tilings of an Aztec diamond of high order are frozen with asymptotically high probability outside the “arctic cir-cle ” inscribed within the diamond. A similar arctic circle phenomenon has been observed in the limiting behavior of random square Young tableaux. In this paper, we show that random domino tilings of the Aztec diamond are asymptotically related to random square Young tableaux in a more refined sense that looks also at the behavior in-side the arctic circle. This is done by giving a new derivation of the limiting shape of the height function of a random domino tiling of the Aztec diamond that uses the large-deviation techniques developed for the square Young tableaux problem in a previous paper by Pittel and the author. The solution of the variational problem that arises for domino tilings is almost identical to the solution for the case of square Young tableaux by Pittel and the author. The analytic techniques used to solve the variational problem provide a systematic, guess-free approach for solving problems of this type which have appeared in a number of related combinatorial probability models.