The probability distribution of sea surface wind speeds. Part-1: theory and SeaWinds observations

The statistical structure of sea surface wind speeds is considered, both in terms of the leading-order moments (mean, standard deviation, and skewness) and in terms of the parameters of a best-fit Weibull distribution. An intercomparison is made of the statistical structure of sea surface wind speed...

Full description

Bibliographic Details
Main Author: Adam Hugh Monahan
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.566.282
http://web.uvic.ca/~monahana/wind_speed_pdf_II.pdf
Description
Summary:The statistical structure of sea surface wind speeds is considered, both in terms of the leading-order moments (mean, standard deviation, and skewness) and in terms of the parameters of a best-fit Weibull distribution. An intercomparison is made of the statistical structure of sea surface wind speed data from four different datasets: SeaWinds scatterometer observations, a blend of Special Sensor Microwave Imager (SSM/I) satellite observations with ECMWF analyses, and two reanalysis products [NCEP–NCAR and 40-yr ECMWF Re-Analysis (ERA-40)]. It is found that while the details of the statistical structure of sea surface wind speeds differs between the datasets, the leading-order features of the distributions are con-sistent. In particular, it is found in all datasets that the skewness of the wind speed is a concave upward function of the ratio of the mean wind speed to its standard deviation, such that the skewness is positive where the ratio is relatively small (such as over the extratropical Northern Hemisphere), the skewness is close to zero where the ratio is intermediate (such as the Southern Ocean), and the skewness is negative where the ratio is relatively large (such as the equatorward flank of the subtropical highs). This relationship between moments is also found in buoy observations of sea surface winds. In addition, the seasonal evolution of the probability distribution of sea surface wind speeds is characterized. It is found that the statistical structure on seasonal time scales shares the relationships between moments characteristic of the year-round data. Furthermore, the seasonal data are shown to depart from Weibull behavior in the same fashion as the year-round data, indicating that non-Weibull structure in the year-round data does not arise due to seasonal nonstationarity in the parameters of a strictly Weibull time series. 1.