Controls on the tectonomagmatic evolution of a volcanic transform margin: the Vøring Transform Margin, NEAtlantic

Ocean bottom seismograph (OBS), multichannel seismic and potential field data reveal the structure of the Vøring Transform Margin (VTM). This transform margin is located at the landward extension of the Jan Mayen Fracture Zone along the southern edge of the Vøring Plateau. The margin consists of two...

Full description

Bibliographic Details
Main Authors: C. Berndt, R. Mjelde, S. Planke, H. Shimamura, J. I. Faleide
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2001
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.557.2124
http://www.noc.soton.ac.uk/gg/people/berndt/berndt-01b.pdf
Description
Summary:Ocean bottom seismograph (OBS), multichannel seismic and potential field data reveal the structure of the Vøring Transform Margin (VTM). This transform margin is located at the landward extension of the Jan Mayen Fracture Zone along the southern edge of the Vøring Plateau. The margin consists of two distinctive segments. The northwestern segment is characterized by large amounts of volcanic material. The new OBS data reveal a 30–40 km wide and 17 km thick high-velocity body between underplated continental crust to the northeast and normal oceanic crust in the southwest. The southeastern segment of the mar is similar to transform margins elsewhere. It is characterized by a 20–30 km wide transform margin high and a narrow continent-ocean transition. The volcanic sequences along this margin segment are less than 1 km thick. We conclude from the spatial correspondence of decreased volcanism and the location of the fracture zone, that the amount of volcanism was influenced by the tectonic setting. We propose that (1) lateral heat transport from the oceanic lithosphere to the adjacent continental lithosphere decreased the ambient mantle temperature and melt production along the entire transform margin and (2) that right-stepping of the left-lateral shear zone at the northwestern margin segment caused lithospheric thinning and increased volcanism. The investigated data show no evidence that the breakup volcanism influenced the tectonic development of the southeastern VTM.