Eastern margin of the Ross Sea Rift in western Marie Byrd

[1] The basement rock and structures of the Ross Sea rift are exposed in coastal western Marie Byrd Land (wMBL), West Antarctica. Thinned, extended continental crust forms wMBL and the eastern Ross Sea continental shelf, where faults control the regional basin-and range-type topography at 20 km spac...

Full description

Bibliographic Details
Main Authors: Antarctica Crustal Structure, Tectonic Development, Bruce P. Luyendyk, Douglas S. Wilson, Christine S. Siddoway
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.551.2808
http://www.geol.ucsb.edu/faculty/luyendyk/Luyendyk_pdf/LuyendyketalMBLSOAR03.pdf
Description
Summary:[1] The basement rock and structures of the Ross Sea rift are exposed in coastal western Marie Byrd Land (wMBL), West Antarctica. Thinned, extended continental crust forms wMBL and the eastern Ross Sea continental shelf, where faults control the regional basin-and range-type topography at 20 km spacing. Onshore in the Ford Ranges and Rockefeller Mountains of wMBL, basement rocks consist of Early Paleozoic metagreywacke and migmatized equivalents, intruded by Devonian-Carboniferous and Cretaceous granitoids. Marine geophysical profiles suggest that these geological formations continue offshore to the west beneath the eastern Ross Sea, and are covered by glacial and glacial marine sediments. Airborne gravity and radar soundings over wMBL indicate a thicker crust and smoother basement inland to the north and east of the northern Ford Ranges. A migmatite complex near this transition, exhumed from mid crustal depths between 100–94 Ma, suggests a profound crustal discontinuity near the inboard limit of extended crust, 300 km northeast of the eastern Ross Sea margin. Near this limit, aeromagnetic mapping reveals an extensive region of high amplitude anomalies east of the Ford ranges that can be interpreted as a sub ice volcanic province. Modeling of gravity data suggests that extended crust in the eastern Ross Sea and wMBL is 8–9 km thinner than interior MBL (b = 1.35). Gravity modeling also outlines extensive regions of low-density (2300–2500 kg m3) buried basement rock that is lighter than rock exposed at the