Combining genetics and population dynamics to improve management of Pacific ocean perch (Sebastes alutus).

Pacific ocean perch (POP) are the most abundant Sebastes rockfish species in Alaskan waters in both biomass and catch. They are distributed broadly along the Gulf of Alaska (GOA) and Bering Sea (BS) continental slopes. As for most rockfish species, POP do not mature at an early age; and they can liv...

Full description

Bibliographic Details
Main Authors: A. J. Gharrett, T. J. Quinn Ii, Fisheries Division
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.546.2003
Description
Summary:Pacific ocean perch (POP) are the most abundant Sebastes rockfish species in Alaskan waters in both biomass and catch. They are distributed broadly along the Gulf of Alaska (GOA) and Bering Sea (BS) continental slopes. As for most rockfish species, POP do not mature at an early age; and they can live to very old ages. Rockfishes are viviparous; after POP larvae are released they may spend several months in the water column before they settle into more demersal habitats. An assumption made for many marine species, which have pelagic larvae and apparently mobile adults, is that their population structures extend over very broad reaches, possibly including much of the natural range. Recently, genetic studies of POP population structure have demonstrated that relatively strong divergence occurs between collections that were sampled at locations spaced about 200 km apart along the GGOAOA and BSBS continental slopes. The degree of divergence suggests that, although population structure is not defined by geographic or oceanographic boundaries, the limited net dispersion that occurs in both pelagic larvae and adults results in restricting the spatial scale of POP production to areas that are related to the average distance moved between birth and reproduction called neighborhoods. The spatial