2001, by the American Society of Limnology and Oceanography, Inc. Effects of photosynthesis on the accumulation of Mn and Fe by Phaeocystis colonies

The significance of Mn and Fe accumulation by Phaeocystis colonies and its control by photosynthesis were investigated by performing incubation assays with radiotracers (54Mn, 59Fe and 14C). Experiments were conducted on pure cultures of Phaeocystis globosa and on natural communities collected durin...

Full description

Bibliographic Details
Main Authors: V. Schoemann, R. Wollast, L. Chou, C. Lancelot
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.539.12
http://www.aslo.org/lo/toc/vol_46/issue_5/1065.pdf
Description
Summary:The significance of Mn and Fe accumulation by Phaeocystis colonies and its control by photosynthesis were investigated by performing incubation assays with radiotracers (54Mn, 59Fe and 14C). Experiments were conducted on pure cultures of Phaeocystis globosa and on natural communities collected during a P. pouchetii bloom in the Balsfjord (subarctic Norwegian fjord) and a P. globosa bloom in the Southern Bight of the North Sea. Results indicate significant accumulation of Mn and Fe in the cultured colonies, as previously shown for Mn. Most of the Mn and Fe accumulation occurred in the mucilaginous matrix of the colonies, and the intracellular assimilation represented only 10 % of the total uptake of these trace elements. These experiments demonstrated that photosyn-thesis largely governed the uptake of Mn by the colonies but only slightly affected the accumulation of Fe. The positive linear relationships observed for the Balsfjord samples between the Mn uptake and the C fixation in the light suggests photosynthetic control of dissolved Mn removal to the Phaeocystis colonies. As had been predicted in earlier studies, the increase in pH and dissolved oxygen observed around and inside the colonies during the photosynthetic activity of the cells could significantly decrease Mn solubility and enhance Mn oxidation rate. However, these changes would not affect significantly the precipitation of Fe according to the thermodynamic considerations. In the highly turbid waters of the North Sea, the removal of Mn and Fe is increased by both inorganic