Effects of experimental greenhouse warming on phytoplankton and zooplankton communities in fishless alpine ponds

The impacts of global warming on aquatic ecosystems are expected to be most pronounced at higher trophic levels in cold-water environments. Therefore, we hypothesized that warming of fishless alpine ponds would suppress large-bodied consumers (e.g., cladocerans, copepods) and stimulate fast-growing...

Full description

Bibliographic Details
Main Authors: Angela L. Strecker, Tyler P. Cobb, Rolf D. Vinebrooke
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2004
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.538.4161
http://www.aslo.org/lo/toc/vol_49/issue_4/1182.pdf
Description
Summary:The impacts of global warming on aquatic ecosystems are expected to be most pronounced at higher trophic levels in cold-water environments. Therefore, we hypothesized that warming of fishless alpine ponds would suppress large-bodied consumers (e.g., cladocerans, copepods) and stimulate fast-growing microorganisms (e.g., phytofla-gellates, rotifers), thereby altering the community composition and total abundance of zooplankton and phytoplank-ton. This hypothesis was tested using three blocks of four experimental mesocosms (1000-liter capacity) that were located next to alpine ponds in Banff National Park, Canada. Each block received unfiltered pond water and sediment from a pond following ice out in June 2000. A warming treatment (control vs. 3.68C warmed) was achieved by controlling the ventilation of greenhouse canopies that were suspended over each of the mesocosms. By the end of our 50-d experiment, warming significantly suppressed total zooplankton biomass because large cladocerans (Daph-nia pulex) declined while rotifer (Keratella cochlearis, Conochilus unicornis) abundance increased during the second half of the experiment. In contrast, warming did not affect total phytoplankton biomass but significantly altered community composition by favoring phytoflagellates (Mallomonas, Synura, Trachelomonas) over larger filamentous green algae (Mougeotia, Phymatodocis). Warming did not significantly increase dissolved nitrogen and phosphorus concentrations. Therefore, warmer growing conditions and reduced grazer biomass best explained the increased