and vitrinite reflectance maturity data, it is suggested that formation of the erosion surface was probably triggered by an uplift and erosion event starting between 40 and 30 Ma. Surface formation was completed prior to an uplift event that started between 11 and Geomorphology xx (2006) xxx–xxx + M...

Full description

Bibliographic Details
Main Authors: Johan M. Bonow A, Peter Japsen B, Karna Lidmar-bergström A, James A. Chalmers B, Asger Ken Pedersen C
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2006
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.535.2118
http://japsen.geus.info/xpdf/bonow-et-al-2006-geom-nuuss.pdf
Description
Summary:and vitrinite reflectance maturity data, it is suggested that formation of the erosion surface was probably triggered by an uplift and erosion event starting between 40 and 30 Ma. Surface formation was completed prior to an uplift event that started between 11 and Geomorphology xx (2006) xxx–xxx + MODEL www.elsevier.com/locate/geomorph ARTICLE IN PRESS⁎10 Ma and caused valley incision. This generation of valleys graded to the new base level and formed a lower erosion surface, at most 1 km below the summit erosion surface, thus indicating the magnitude of its uplift. Formation of this generation of valleys was interrupted by a third uplift event also with a magnitude of 1 km that lifted the landscape to near its present position. Correlation with the fission-track record suggests that this uplift event started between 7 and 2 Ma. Uplift must have been caused initially by tectonism. Isostatic compensation due to erosion and loading and unloading of ice sheets has added to the magnitude of uplift but have not significantly altered the configuration of the surface. It is concluded that the elevations of palaeosurfaces (surfaces not in accordance with present climate or tectonic conditions) on West Greenland's passive margin can be used to define the magnitude and lateral variations of Neogene uplift events. The striking similarity between the landforms in West Greenland and those on many other passive margins is also noted.