Pollution and paradigms: lessons from Icelandic volcanism for continental flood basalt studies. Lithos 79, 343– 353 (this volume

This paper is based on the premise that research into the environmental impact of continental flood basalt (CFB) volcanism has paid insufficient attention to the potential ecosystem damage that would result from the direct deposition of hundreds of megatons (Tg) of sulphur and other volatiles. The e...

Full description

Bibliographic Details
Main Author: John Grattan
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2005
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.532.4070
http://cadair.aber.ac.uk/dspace/bitstream/handle/2160/234/Pollution and paradigms1.pdf;jsessionid=A0AEABF2B1377718FC9DEC507E9B58CF?sequence=1
Description
Summary:This paper is based on the premise that research into the environmental impact of continental flood basalt (CFB) volcanism has paid insufficient attention to the potential ecosystem damage that would result from the direct deposition of hundreds of megatons (Tg) of sulphur and other volatiles. The environmental impacts of the 1783 Laki Fissure eruption are reviewed in outline. It is shown that in a relatively brief period of volcanic activity, volatiles emitted by the eruption damaged and destroyed vegetation from the Arctic Ocean to the Mediterranean. Air pollution was so intense that human health was affected and the national death rate increased dramatically in both England and France. It is proposed that the events of 1783 may be used as a paradigm for the environmental impacts of a CFB lava flow, and the emissions of 1783 are scaled up to illustrate this point. Thus, if a Laki style event were to erupt for a year it would approach the physical scale of a single episode of the Roza flow in the Columbia River CFB and potentially yield 576 Tg of sulphur gases which could have been oxidised into approximately 945 Tg of aerosol. This could generate a tropospheric aerosol mass of approximately 708 Tg H2SO4. The ecosystem impact of the deposition of acids on this scale would be profound and, as with the actual Laki event, be continental in scale. All parts of the plant life cycle would be disrupted, including photosynthesis and fruiting. Inevitably, withthe disruption of food webs animals would also be affected. Poorly buffered inland waters would be acidified, as would Boreal soils, reducing their biodiversity. In our already polluted and interdependent world, any future event on this scale would have serious consequences for human health and trade.