Improving Multiseason Forecasts of North Atlantic Hurricane Activity

Hurricanes cause drastic social problems as well as generate huge economic losses. A reliable forecast of the level of hurricane activity covering the next several seasons has the potential to mitigate against such losses through improvements in preparedness and insurance mechanisms. Here a statisti...

Full description

Bibliographic Details
Main Authors: James B. Elsner, Thomas, H. Jagger
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2006
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.522.5122
http://mailer.fsu.edu/~jelsner/PDF/Research/ElsnerJaggerDickinsonRowe2008.pdf
Description
Summary:Hurricanes cause drastic social problems as well as generate huge economic losses. A reliable forecast of the level of hurricane activity covering the next several seasons has the potential to mitigate against such losses through improvements in preparedness and insurance mechanisms. Here a statistical algorithm is developed to predict North Atlantic hurricane activity out to 5 yr. The algorithm has two components: a time series model to forecast average hurricane-season Atlantic sea surface temperature (SST), and a regression model to forecast the hurricane rate given the predicted SST value. The algorithm uses Monte Carlo sampling to generate distributions for the predicted SST and model coefficients. For a given forecast year, a predicted hurricane count is conditional on a sampled predicted value of Atlantic SST. Thus forecasts are samples of hurricane counts for each future year. Model skill is evaluated over the period 1997–2005 and compared against climatology, persistence, and other multiseasonal forecasts issued during this time period. Results indicate that the algorithm will likely improve on earlier efforts and perhaps carry enough skill to be useful in the long-term management of hurricane risk. 1.