Geomicrobiology of Blood Falls: An iron-rich saline discharge at the terminus of the Taylor Glacier

Antarctica provides an example of the diverse physical and chemical niches available for life in the polar desert of the McMurdo Dry Valleys. Geochemical analysis of Blood Falls outflow resembles concentrated seawater remnant from the Pliocene intrusion of marine waters combined with products of wea...

Full description

Bibliographic Details
Main Authors: Jill A. Mikucki, Christinem Foreman, Birgit Sattler, W. Berry Lyons, John C. Priscu
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2004
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.512.3529
http://mcm-dvlakesmo.montana.edu/images/data/publications/mikuckietal2004salinedischarge.pdf
Description
Summary:Antarctica provides an example of the diverse physical and chemical niches available for life in the polar desert of the McMurdo Dry Valleys. Geochemical analysis of Blood Falls outflow resembles concentrated seawater remnant from the Pliocene intrusion of marine waters combined with products of weathering. The result is an iron-rich, salty seep at the terminus of Taylor Glacier, which is subject to episodic releases into permanently ice-covered Lake Bonney. Blood Falls influences the geochemistry of Lake Bonney, and provides organic carbon and viable microbes to the lake system. Here we present the first data on the geobiology of Blood Falls and relate it to the evolutionary history of this unique environment. The novel geological evolution of this subglacial environment makes Blood Falls an important site for the study of metabolic strategies in subglacial environments and the impact of subglacial efflux on associated lake ecosystems.