The Phanerozoic record of global sea-level change

We review Phanerozoic sea-level changes [543 million years ago (Ma) to the present] on various time scales and present a new sea-level record for the past 100 million years (My). Long-term sea level peaked at 100 T 50 meters during the Cretaceous, implying that ocean-crust production rates were much...

Full description

Bibliographic Details
Main Authors: Peter J. Sugarman, Benjamin S. Cramer, Nicholas Christie-blick, Stephen F. Pekar
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2005
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.510.7453
http://rockbox.rutgers.edu/pdf/millerscience2005.pdf
Description
Summary:We review Phanerozoic sea-level changes [543 million years ago (Ma) to the present] on various time scales and present a new sea-level record for the past 100 million years (My). Long-term sea level peaked at 100 T 50 meters during the Cretaceous, implying that ocean-crust production rates were much lower than previously inferred. Sea level mirrors oxygen isotope variations, reflecting ice-volume change on the 104- to 106-year scale, but a link between oxygen isotope and sea level on the 107-year scale must be due to temperature changes that we attribute to tectonically controlled carbon dioxide variations. Sea-level change has influenced phytoplankton evolution, ocean chemistry, and the loci of carbonate, organic carbon, and siliciclastic sediment burial. Over the past 100 My, sea-level changes reflect global climate evolution from a time of ephemeral Antarctic ice sheets (100 to 33 Ma), through a time of large ice sheets primarily in Antarctica (33 to 2.5 Ma), to a world with large Antarctic and large, variable Northern Hemisphere ice sheets (2.5 Ma to the present). F luctuations in global sea level (eustasy)