Hydroclimatic modulation of diatom/Phaeocystis blooms in the nutrient-enriched Belgian coastal waters (North Sea). Limnology and Oceanography 51(3):1401–1409

Statistical analysis of 14 yr (1988–2001) of intensive phytoplankton monitoring at Station 330 in the central Belgian Coastal Zone (BCZ, Southern Bight of the North Sea) indicates that the long-term diatom biomass trend and the spring dominance of Phaeocystis colonies over diatoms are determined by...

Full description

Bibliographic Details
Main Authors: Elsa Breton, Jean-yves Parent, Jose ́ Ozer, Christiane Lancelot
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2006
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.506.420
http://www.ulb.ac.be/assoc/esa/comets/publis_pdf/Breton et al. 2006.pdf
Description
Summary:Statistical analysis of 14 yr (1988–2001) of intensive phytoplankton monitoring at Station 330 in the central Belgian Coastal Zone (BCZ, Southern Bight of the North Sea) indicates that the long-term diatom biomass trend and the spring dominance of Phaeocystis colonies over diatoms are determined by the combined effect of the North Atlantic Oscillation (NAO) and freshwater and continental nitrate carried by the Scheldt. The strong correlation between diatoms and the NAO index is largely explained by the modulating effect of the latter on the water budget at the monitoring station. The relationship between Phaeocystis spring blooms and winter NAO (NAOw) is indirect, better expressed by springtime Phaeocystis dominance over diatoms because of the higher response of the latter to the NAO. The spring Phaeocystis: diatom bloom ratio is negatively (or positively) linked to positive (or negative) NAOw values. A complex cascade of events links large-scale NAO index variations with those local meteorological conditions (wind strength and direction, rainfall) that drive the hydrography and water budget of the BCZ. Local meteorological conditions in turn modulate the geographical spread of Scheldt nutrient loads in the coastal zone and ultimately regulate the magnitude of Phaeocystis spring blooms by determining winter nitrate enrichment. Hence, the absence of a linear relationship between Phaeocystis spring blooms and NAOw is explained by the nonlinear response of river-based nitrate pulses to NAO due to local wind-driven hydrodynamical forcing. Large-scale atmospheric variability has a substantial effect on phytoplankton bloom dynamics and species