A 12,000 year record of explosive volcanism in the

[1] Air mass trajectories in the Southern Hemisphere provide a mechanism for transport to and deposition of volcanic products on the Antarctic ice sheet from local volcanoes and from tropical and subtropical volcanic centers. This study extends the detailed record of Antarctic, South American, and e...

Full description

Bibliographic Details
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.501.7360
http://geoinfo.nmt.edu/staff/dunbar/publications/documents/kurbatov_ziel_dunbar_siple.pdf
Description
Summary:[1] Air mass trajectories in the Southern Hemisphere provide a mechanism for transport to and deposition of volcanic products on the Antarctic ice sheet from local volcanoes and from tropical and subtropical volcanic centers. This study extends the detailed record of Antarctic, South American, and equatorial volcanism over the last 12,000 years using continuous glaciochemical series developed from the Siple Dome A (SDMA) ice core, West Antarctica. The largest volcanic sulfate spike (280 mg/L) occurs at 5881 B.C.E. Other large signals with unknown sources are observed around 325 B.C.E. (270 mg/L) and 2818 B.C.E. (191 mg/L). Ages of several large equatorial or Southern Hemisphere volcanic eruptions are synchronous with many sulfate peaks detected in the SDMA volcanic ice chemistry record. The microprobe ‘‘fingerprinting’ ’ of glass shards in the SDMA core points to the following Antarctic volcanic centers as sources of tephra found in the SDMA