change in role of the tropical and boreal-temperate zones

www.elsevier.com/locate/chemospherenorthern midlatitudes in affecting global CO2 increment. Once non-lagged annual tropical temperature variations are accounted for, terrestrial ecosystems, especially the temperate-boreal biomes, also show a coherent large scale lagged response. This involves an inv...

Full description

Bibliographic Details
Main Authors: Jonathan M. Adams A, Gianluca Piovesan B
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2005
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.491.1892
http://www.unitus.it/dipartimenti/daf/dendro/pubblicazioni/Chemosphere2005.pdf
Description
Summary:www.elsevier.com/locate/chemospherenorthern midlatitudes in affecting global CO2 increment. Once non-lagged annual tropical temperature variations are accounted for, terrestrial ecosystems, especially the temperate-boreal biomes, also show a coherent large scale lagged response. This involves an inverse response to annual temperature of preceding years centered at around 2 years before. This lagged response is most likely linked to internal biogeochemical cycles, in particular N cycling. During the study period north boreal ecosystems show a strengthening of the lagged correlation with temperature in recent years, while the lagged correlation with areas of tropical ecosystems has weakened. Residuals from a multiple correlations based on these climatic signals are directly correlated with SO, confirming an additional important role of upwelling in interannual variability of CO2 increment. Cooler summers following the Pinatubo eruption and the possible influence of the North Atlantic Oscillation (NAO/AO) are discussed as factors responsible for the shift in the relative importance of different regions over time during the series of data.