Combining research and education: Bioclimatic zonation along a Canadian Arctic transect, Artic

ABSTRACT. Scientists and students from five countries combined research and education in an investigation of bioclimatic zonation along a Canadian Arctic transect, from Amund Ringnes Island and Ellesmere Island in the north to the Daring Lake research camp at the southern edge of the tundra in Nunav...

Full description

Bibliographic Details
Main Authors: W. A. Gould, D. A. Walker, D. Biesboer
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.475.1950
http://arctic.synergiesprairies.ca/arctic/index.php/arctic/article/viewFile/601/630/
Description
Summary:ABSTRACT. Scientists and students from five countries combined research and education in an investigation of bioclimatic zonation along a Canadian Arctic transect, from Amund Ringnes Island and Ellesmere Island in the north to the Daring Lake research camp at the southern edge of the tundra in Nunavut. We addressed three important needs in Arctic science: 1) to integrate education and research, 2) to provide field experiences for undergraduates, and 3) to foster international collaboration. We describe five subzones within the Arctic tundra zone. Subzones are defined by the vegetation typical of mesic environments at low elevations and the dominant growth forms of vegetation in these environments. Subzonal boundaries coincide with the northern limits of several species of woody plants with distinct upright or prostrate growth forms, and ultimately with the northern limit of woody plant species. The five subzones, A–E, from north to south, are characterized by dominant growth form: (A) cushion