Interannual to decadal variability in climate and the glacier mass balance in

The authors examine the net winter, summer, and annual mass balance of six glaciers along the northwest coast of North America, extending from Washington State to Alaska. The net winter (NWB) and net annual (NAB) mass balance anomalies for the maritime glaciers in the southern group, located in Wash...

Full description

Bibliographic Details
Main Authors: C. M. Bitz, D. S. Battisti
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 1999
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.471.7422
http://www.atmos.washington.edu/~david/bb99.pdf
Description
Summary:The authors examine the net winter, summer, and annual mass balance of six glaciers along the northwest coast of North America, extending from Washington State to Alaska. The net winter (NWB) and net annual (NAB) mass balance anomalies for the maritime glaciers in the southern group, located in Washington and British Columbia, are shown to be positively correlated with local precipitation anomalies and storminess (defined as the rms of high-passed 500-mb geopotential anomalies) and weakly and negatively correlated with local temperature anomalies. The NWB and NAB of the maritime Wolverine glacier in Alaska are also positively correlated with local precipitation, but they are positively correlated with local winter temperature and negatively correlated with local storminess. Hence, anomalies in mass balance at Wolverine result mainly from the change in moisture that is being advected into the region by anomalies in the averaged wintertime circulation rather than from a change in storminess. The patterns of the wintertime 500-mb circulation and storminess anomalies associated with years of high NWB in the southern glacier group are similar to those associated with low NWB years at the Wolverine glacier, and vice versa. The decadal ENSO-like climate phenomenon discussed by Zhang et al. has a large impact on the NWB and NAB of these maritime glaciers, accounting for up to 35 % of the variance in NWB. The 500-mb circulation