Effects of the ice-edge bloom and season on the metabolism of copepods
The metabolic responses of several species of Antarctic copepods to primary productivity and changes between seasons were investigated. To examine the influence of the spring ice-edge bloom on the metabolism of copepods, oxygen consumption rates were determined on specimens from three zones of widel...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Text |
Language: | English |
Subjects: | |
Online Access: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.7003 http://laps.io.usp.br/articles/Helena/Effects of the ice-edge bloom_Helena2001.pdf |
Summary: | The metabolic responses of several species of Antarctic copepods to primary productivity and changes between seasons were investigated. To examine the influence of the spring ice-edge bloom on the metabolism of copepods, oxygen consumption rates were determined on specimens from three zones of widely different ice coverage and chlorophyll biomass: pack ice (pre-bloom), ice edge (bloom) and open water (post-bloom). Summer metabolic rates were compared with published winter rates. Field work was done in the Weddell Sea in the region of 60 ◦S, 36◦W in late November and December 1993. Oxygen consumption rates were determined by placing individuals in syringe respirometers and monitoring the oxygen partial pressure for 10–20 hours. Higher metabolic rates were observed in the primarily herbivorous copepods, Calanoides acutus, Rhincalanus gigas and Calanus propinquus in regions of higher primary production: ice edge and open water. The carnivorous Paraeuchaeta antarctica showed a similar pattern. The omnivorous copepods Metridia gerlachei and Gaetanus tenuispinus showed no changes in metabolism between zones. Data on routine rates of copepods from the winter were available for C. propinquus and P. antarctica. In P. antarctica, rates were higher in the summer. Calanus propinquus showed a higher metabolic rate in the summer than in the winter, but the difference was not significant at the 0.05 level. It was concluded that copepods near the ice zone in the ice zone in the Antarctic rely on the spring ice-edge bloom for growth and completion of their life cycle. |
---|