South Africa

Changes and fluctuations in sea surface temperature (SST) around the South African coast are analysed at a monthly scale from 1982 to 2009. There is a statistically significant negative trend of up to 0.5 °C per decade in the southern Benguela from January to August, and a cooling trend of lesser ma...

Full description

Bibliographic Details
Main Authors: M Rouault, B Pohl, P Penven
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2009
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.463.509
http://climatologie.u-bourgogne.fr/perso/bpohl/Publications_files/RPP2010.PDF
Description
Summary:Changes and fluctuations in sea surface temperature (SST) around the South African coast are analysed at a monthly scale from 1982 to 2009. There is a statistically significant negative trend of up to 0.5 °C per decade in the southern Benguela from January to August, and a cooling trend of lesser magnitude along the South Coast and in the Port Elizabeth/Port Alfred region from May to August. The cooling is due to an increase in upwelling-favourable south-easterly and easterly winds. There is a positive trend in SST of up to 0.55 °C per decade in most parts of the Agulhas Current system during all months of the year, except for KwaZulu-Natal where warming is in summer. The warming was attrib-uted to an intensification of the Agulhas Current in response to a poleward shift of westerly winds and an increase in trade winds in the South Indian Ocean at relevant latitudes. This intensification of the Agulhas Current could also have contributed to the coastal cooling in the Port Alfred dynamic upwelling region. The El Niño Southern Oscillation (ENSO) is significantly positively correlated at a 95 % level with the southern Benguela and South Coast from February to May, and negatively correlated with the Agulhas Current system south of 36 ° S. The correlation with the Antarctic Annular Oscillation is weaker and less coherent. El Niño suppresses upwelling along the coast, whereas La Niña increases it. Although there does not seem to be a linear relationship between the strength of the ENSO and the