Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification

[1] Vast amounts of methane hydrates are potentially stored in sediments along the continental margins, owing their stabi l i ty to low temperature – high pressure conditions. Global warming could destabilize these hydrates and cause a release of methane (CH4) into the water column and possibly the...

Full description

Bibliographic Details
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2011
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.461.6317
http://eprints.uni-kiel.de/13116/1/2011_Biastoch_etal_GRL_2011GL047222.pdf
Description
Summary:[1] Vast amounts of methane hydrates are potentially stored in sediments along the continental margins, owing their stabi l i ty to low temperature – high pressure conditions. Global warming could destabilize these hydrates and cause a release of methane (CH4) into the water column and possibly the atmosphere. Since the Arctic has and will be warmed considerably, Arctic bottom water temperatures and their future evolution projected by a climate model were analyzed. The resulting warming is spatially inhomogeneous, with the strongest impact on shallow regions affected by Atlantic inflow. Within the next 100 years, the warming affects 25 % of shallow and mid‐depth regions containing methane hydrates. Release of methane from melting hydrates in these areas could enhance ocean acidification and oxygen depletion in the water column. The impact of methane release on global warming, however, would not be significant within the considered time span. Citation: Biastoch, A., et al. (2011), Rising Arctic Ocean temperatures cause gas hydrate destabiliza-tion and ocean acidification, Geophys. Res. Lett., 38, L08602, doi:10.1029/2011GL047222. 1.