The role of poleward‐intensifying winds on southern ocean warming

Recent analyses of the latest series of climate model simulations suggest that increasing CO2 emissions in the atmosphere are partly responsible for (i) the observed poleward shifting and strengthening of the Southern Hemisphere subpolar westerlies (in association with shifting of the southern annul...

Full description

Bibliographic Details
Main Authors: John C. Fyfe, Oleg, A. Saenko, Kirsten Zickfeld, Michael Eby, Andrew, J. Weaver
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2007
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.454.8664
http://www.cccma.ec.gc.ca/papers/osaenko/PDF/wind_so_warming_07.pdf
Description
Summary:Recent analyses of the latest series of climate model simulations suggest that increasing CO2 emissions in the atmosphere are partly responsible for (i) the observed poleward shifting and strengthening of the Southern Hemisphere subpolar westerlies (in association with shifting of the southern annular mode toward a higher index state), and (ii) the observed warming of the subsurface Southern Ocean. Here the role that poleward-intensifying westerlies play in subsurface Southern Ocean warming is explored. To this end a climate model of intermediate complexity was driven separately, and in combination with, time-varying CO2 emissions and time-varying surface winds (derived from the fully coupled climate model simulations men-tioned above). Experiments suggest that the combination of the direct radiative effect of CO2 emissions and poleward-intensified winds sets the overall magnitude of Southern Ocean warming, and that the poleward-intensified winds are key in terms of determining its latitudinal structure. In particular, changes in wind stress curl associated with poleward-intensified winds significantly enhance pure CO2-induced subsurface warming around 45°S (through increased downwelling of warm surface water), reduces it at higher latitudes (through increased upwelling of cold deep water), and reduces it at lower latitudes (through decreased downwelling of warm surface water). Experiments also support recent high-resolution ocean model experi-