[1] Observations indicate that the occurrence of dense upper-ocean water masses coincides with periods of intense deep-water formation in the Greenland Sea. This paper focuses on the upper-ocean hydrography of the area and its simulation in models. We analyze properties that reside below the summer...

Full description

Bibliographic Details
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2007
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.453.6999
http://psc.apl.washington.edu/zhang/Pubs/Hakkinen_etal_2006JC003687.pdf
Description
Summary:[1] Observations indicate that the occurrence of dense upper-ocean water masses coincides with periods of intense deep-water formation in the Greenland Sea. This paper focuses on the upper-ocean hydrography of the area and its simulation in models. We analyze properties that reside below the summer mixed layer at 200 m and carry the winter mixing signal. The analysis employs numerical simulations from four different models, all of which are forced as specified by the Arctic Ocean Model Intercomparison Project (AOMIP). The models exhibit varying degrees of success in simulating upper-ocean properties observed in the Greenland Sea, including very dense, saline water masses in the 1950s, 1960s, and 1970s. Two of the models predict the importance of salinity in determining the maximum density in the upper waters of the central gyre. The circulation pattern of Atlantic Water was captured well by two high-resolution models as measured by temperature-salinity-density relationships. The simulated temporal variability of Atlantic Water properties was less satisfactory, particularly in the case of salinity.