Interocean exchange of thermocline water

Formation of North Atlantic Deep Water (NADW) represents a transfer of upper layer water to abyssal depths at a rate of 15 to 20 x 10 6 m3/s. NADW spreads throughout the Atlantic Ocean and is exported to the Indian and Pacific Oceans by the Antarctic Circumpolar Current and deep western boundary cur...

Full description

Bibliographic Details
Main Author: Arnold L. Gordon
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 1986
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.452.9384
http://www.ldeo.columbia.edu/~agordon/publications/Gordon86_thermocline_JGR.pdf
Description
Summary:Formation of North Atlantic Deep Water (NADW) represents a transfer of upper layer water to abyssal depths at a rate of 15 to 20 x 10 6 m3/s. NADW spreads throughout the Atlantic Ocean and is exported to the Indian and Pacific Oceans by the Antarctic Circumpolar Current and deep western boundary currents. Naturally, there must be a compensating flow of upper layer water toward the northern North Atlantic to feed NADW production. It is proposed that this return flow is accomplished primarily within the ocean's warm water thermocline layer. In this way the main thermoclines of the ocean are linked as they participate in a thermohaline-driven global scale circulation cell associated with NADW formation. The path of the return flow of warm water is as follows: Pacific to Indian flow within the Indonesian Seas, advection across the Indian Ocean in the 10ø-15øS latitude belt, southward transfer in the Mozambique Channel, entry into the South Atlantic by a branch of the Agulhas Current that does not complete the retroflection pattern, northward advection within the subtropical gyre of the South Atlantic (which on balance with the southward flux of colder North Atlantic Deep Water supports the northward oceanic heat flux characteristic of the South Atlantic), and cross-equatorial flow into the western North Atlantic. The magnitude of the return flow increases along its path as more NADW is incorporated into the upper layer of the ocean. Additionally, the water mass characteristics of the return