Tabular iceberg collisions within the coastal regime

ABSTRACT. During 2000–07, five giant icebergs (B15A, B15J, B15K, C16 and C25) adrift in the southwestern Ross Sea, Antarctica, were instrumented with global positioning system (GPS) receivers and other instruments to monitor their behavior in the near-coastal environment. The measurements show that...

Full description

Bibliographic Details
Main Authors: Douglas R. Macayeal, Marianne H. Okal, Jonathan E. Thom, Kelly M. Brunt, Young-jin Kim, Andrew K. Bliss
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2008
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.430.1908
http://www.igsoc.org/journal/54/185/j07j053.pdf
Description
Summary:ABSTRACT. During 2000–07, five giant icebergs (B15A, B15J, B15K, C16 and C25) adrift in the southwestern Ross Sea, Antarctica, were instrumented with global positioning system (GPS) receivers and other instruments to monitor their behavior in the near-coastal environment. The measurements show that collision processes can strongly influence iceberg behavior and delay their progress in drifting to the open ocean. Collisions appear to have been a dominant control on the movement of B15A, the largest of the icebergs, during the 4-year period it gyrated within the limited confines of Ross Island, the fixed Ross Ice Shelf and grounded C16. Iceberg interactions in the near-coastal regime are largely driven by ocean tidal effects which determine the magnitude of forces generated during collision and break-up events. Estimates of forces derived from the observed drift trajectories during the iceberg-collisioninduced calving of iceberg C19 from the Ross Ice Shelf, during the iceberg-induced break-off of the tip of the Drygalski Ice Tongue and the break-up of B15A provide a crude estimate of the stress scale involved in iceberg calving. Considering the total area the vertical face of new rifts created in the calving or break-up process, and not accounting for local stress amplification near rift tips, this estimated stress scale is 10 4 Pa.