SCATTERING CHANGES IN THE DIELECTRIC AND PROPERTIES OF YOUNG SNOW-COVERED

ABSTRACT. Observations of the physical properties of the snow cover and underlying young fast ice in Resolute Passage, N.W.T., Canada, were made during the winter of 1982. Detailed measurements of snow density, and ice and snow temperatures, salinities, and brine volumes were made over a period of 4...

Full description

Bibliographic Details
Main Authors: Sea Ice, At Ghz Frequencies, R. Drinkwater, G. B. Crocker
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.429.6767
http://www.igsoc.org/journal/34/118/igs_journal_vol34_issue118_pg274-282.pdf
Description
Summary:ABSTRACT. Observations of the physical properties of the snow cover and underlying young fast ice in Resolute Passage, N.W.T., Canada, were made during the winter of 1982. Detailed measurements of snow density, and ice and snow temperatures, salinities, and brine volumes were made over a period of 46 d, beginning when the ice was 0.4 m thick and about 8 d old. The recorded values are used in a theoretical mixture model to predict the dielectric properties of the snow cover over the microwave frequency range. The results of this analysis are then used to investigate the effects of the snow properties on the radar back-scatter signatures of young sea ice. The results show that back-scatter is a function of the incidence angle and can change significantly over short periods of time during the early evolutionary phase of ice and snow-cover development. This has important consequences for the identification of young ice forms from Synthetic Aperture or Side Looking Airborne Radar images. I.