Continuous profiles of electromagnetic wave velocity and water content in glaciers: an example from Bench Glacier, Alaska, USA

ABSTRACT. We conducted two-dimensional continuous multi-offset georadar surveys on Bench Glacier, south-central Alaska, USA, to measure the distribution of englacial water. We acquired data with a multichannel 25 MHz radar system using transmitter–receiver offsets ranging from 5 to 150 m. We towed t...

Full description

Bibliographic Details
Main Authors: John H. Bradford, Joshua Nichols, T. Dylan Mikesell, Joel T. Harper
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.429.5997
http://www.igsoc.org/annals/50/51/A51A026.pdf
Description
Summary:ABSTRACT. We conducted two-dimensional continuous multi-offset georadar surveys on Bench Glacier, south-central Alaska, USA, to measure the distribution of englacial water. We acquired data with a multichannel 25 MHz radar system using transmitter–receiver offsets ranging from 5 to 150 m. We towed the radar system at 5–10 km h –1 with a snow machine with transmitter/receiver positions established by geodetic-grade kinematic differentially corrected GPS (nominal 0.5 m trace spacing). For radar velocity analyses, we employed reflection tomography in the pre-stack depth-migrated domain to attain an estimated 2 % velocity uncertainty when averaged over three to five wavelengths. We estimated water content from the velocity structure using the complex refractive index method equation and use a three-phase model (ice, water, air) that accounts for compression of air bubbles as a function of depth. Our analysis produced laterally continuous profiles of glacier water content over several kilometers. These profiles show a laterally variable, stratified velocity structure with a low-watercontent (�0–0.5%) shallow layer (�20–30 m) underlain by high-water-content (1–2.5%) ice.