Cenozoic plate tectonic reconstructions and plate boundary processes in the Southwest Pacific

I’d like to thank my wife, Hallie, for her patience and understanding. Completing this thesis would have never been possible without her loving support. iv The Australia-Pacific-Antarctic plate circuit has long been a weak link in global plate reconstruction models for Cenozoic time. The time period...

Full description

Bibliographic Details
Main Author: William R. Keller
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2004
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.425.6017
http://thesis.library.caltech.edu/99/1/Thesis.pdf
Description
Summary:I’d like to thank my wife, Hallie, for her patience and understanding. Completing this thesis would have never been possible without her loving support. iv The Australia-Pacific-Antarctic plate circuit has long been a weak link in global plate reconstruction models for Cenozoic time. The time period spanning chron 20 to chron 7 (43-25 Ma) is particularly problematic for global plate models because seafloor spreading was occurring in two poorly constrained regions in the Southwest Pacific- the Macquarie Basin southwest of New Zealand, and the Adare Basin north of the Ross Sea, Antarctica. I present a new shipboard dataset collected aboard several recent geophysical cruises which places important constraints on the tectonic evolution of these two regions. Utilizing multibeam bathymetry, magnetic, gravity, and seismic data in the Macquarie Basin, I am able to locate tectonic features and magnetic anomalies with greater accuracy than was previously possible. These tectonic features and magnetic anomalies are then used to calculate relative motion between the Australia and Pacific Plates for chrons 18-11 (40-30 Ma). I use revised locations of the rifted margins along the boundary of the Macquarie Basin to determine a best-fit pre-rift reconstruction for this region. During this same time period, seafloor spreading between East and West Antarctica was occurring along the Adare Trough, an extinct spreading center located north of the Ross Sea. Motion along the Adare Trough accounts for roughly 180 km of previously unrecognized motion between East and West Antarctica. I present multibeam and seismic data in the Adare Basin that place constraints on the timing and character of motion along this plate boundary. v Contents