Spatial and temporal variability in the growth and climate response of treeline trees in Alaska

Abstract. In this study, we investigated the response of trees growing at the cold margins of the boreal forest to climate variation in the 20th century. Working at eight sites at and near alpine and arctic treeline in three regions in Alaska, we compared tree growth (from measured tree ring-widths)...

Full description

Bibliographic Details
Main Authors: Andrea H. Lloyd, Christopher L. Fastie
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2002
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.420.7409
http://www.lter.uaf.edu/pdf/753_lloyd_fastie_2002.pdf
Description
Summary:Abstract. In this study, we investigated the response of trees growing at the cold margins of the boreal forest to climate variation in the 20th century. Working at eight sites at and near alpine and arctic treeline in three regions in Alaska, we compared tree growth (from measured tree ring-widths) to historical climate data to document how growth has responded to climate variation in the 20th century. We found that there was substantial regional variability in response to climate variation. Contrary to our expectations, we found that after 1950 warmer temperatures were associated with decreased tree growth in all but the wettest region, the Alaska Range. Although tree growth increased from 1900–1950 at almost all sites, significant declines in tree growth were common after 1950 in all but the Alaska Range sites. We also found that there was substantial variability in response to climate variation according to distance to treeline. Inverse growth responses to temperature were more common at sites below the forest margin than at sites at the forest margin. Together, these results suggest that inverse responses to temperature are widespread, affecting even the coldest parts of the boreal forest. Even in such close proximity to treeline, warm temperatures after 1950 have been associated with reduced tree growth. Growth declines were most common in the warmer and drier sites, and thus support the hypothesis that drought-stress may accompany increased warming in the boreal forest. 1.