ORIGINAL PAPER Contribution of winter processes to soil nitrogen flux in taiga forest ecosystems

Abstract We measured annual net nitrogen (N) mineralization, nitrification, and amino acid production in situ across a primary successional sequence in interior Alaska, USA. Net N mineralization per gram dry soil increased across the successional sequence, but with a sharp decline in the oldest stag...

Full description

Bibliographic Details
Main Authors: Richard D. Boone, K. Kiell, R. D. Boone
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.419.9528
http://www.lter.uaf.edu/pdf/1078_Kielland_Olson.pdf
Description
Summary:Abstract We measured annual net nitrogen (N) mineralization, nitrification, and amino acid production in situ across a primary successional sequence in interior Alaska, USA. Net N mineralization per gram dry soil increased across the successional sequence, but with a sharp decline in the oldest stage (black spruce). Net N mineralization expressed per gram soil organic matter exhibited the opposite pattern, suggesting that soil organic matter quality decreases significantly across succession. Net N mineralization rates during the growing season from green-up (early May) through freeze-up (late September–early October) accounted for approximately 60 % of the annual inorganic N flux, whereas the remaining N was released during the apparent dormant season. Nitrogen release during winter occurred primarily during October–January with only negligible N mineralization during early spring in stands of willow, alder, balsam poplar and white spruce. By contrast, black spruce stands exhibited substantial mineralization after snow melt during early spring. The high rates of N mineralization in late autumn through early