90 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 30 Proximity of the Present-Day Thermohaline Circulation to an Instability Threshold

The relation between the mean state of the thermohaline circulation (THC) and its stability is examined using a realistic-geometry primitive equation coupled ocean–atmosphere–ice global general circulation model. The main finding is that a thermohaline circulation that is 25 % weaker and less domina...

Full description

Bibliographic Details
Main Author: Eli Tziperman
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 1998
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.419.2325
http://www.seas.harvard.edu/climate/eli/reprints/Tziperman-2000a.pdf
Description
Summary:The relation between the mean state of the thermohaline circulation (THC) and its stability is examined using a realistic-geometry primitive equation coupled ocean–atmosphere–ice global general circulation model. The main finding is that a thermohaline circulation that is 25 % weaker and less dominated by thermal forcing than that of today’s ocean is unstable within this coupled GCM. Unstable initial ocean climates lead in the coupled model to an increase of the THC, to strong oscillations, or to a THC collapse. The existence of an unstable range of weak states of the THC provides a natural explanation for largeamplitude THC variability seen in the paleo record prior to the past 10 000 years: A weakening of the THC due to an external forcing (e.g., ice melting and freshening of the North Atlantic) may push it into the unstable regime. Once in this regime, the THC strongly oscillates due to the inherent instability of a weak THC. Hence the strong THC variability in this scenario does not result from switches between two or more quasi-stable steady states. 1.