ORIGINAL PAPER Selection on flowering time in Mediterranean high-mountain plants under global warming

Abstract Under climate warming, plants will undergo novel selective pressures to adjust reproductive timing. Adjustment between reproductive phenology and environment is expected to be higher in arctic and alpine habitats because the growing season is considerably short. As early- and late-flowering...

Full description

Bibliographic Details
Main Authors: Luis Giménez-benavides, Raúl García-camacho, José María Iriondo, Adrián Escudero
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.407.1366
http://www.escet.urjc.es/biodiversos/publica/Gimenez_Benavides_et_al_2011_Evol_Ecol.pdf
Description
Summary:Abstract Under climate warming, plants will undergo novel selective pressures to adjust reproductive timing. Adjustment between reproductive phenology and environment is expected to be higher in arctic and alpine habitats because the growing season is considerably short. As early- and late-flowering species reproduce under very different environmental conditions, selective pressures on flowering phenology and potential effects of climate change are likely to differ between them. However, there is no agreement on the magnitude of the benefits and costs of early- vs. late-flowering species under a global warming scenario. In spite of its relevance, phenotypic selection on flowering phenology has rarely been explored in alpine plants and never in Mediterranean high mountain species, where selective pressures are very different due to the summer drought imposed over the short growth season. We hypothesized that late-flowering plants in Mediterranean mountains should present stronger selective pressures towards early onset of reproduction than early-flowering species, because less water is available in the soil as growing season progresses. We performed selection analyses on flowering onset and duration in two high mountain species of contrasting phenology. Since phenotypic selection can be highly