MIPAS satellite data with the chemistry climate model
Abstract. The chemistry climate model ECHAM5/MESSy1 (E5/M1) in a setup extending from the surface to 80 km with a vertical resolution of about 600 m near the tropopause with nudged tropospheric meteorology allows a direct comparison with satellite data of chemical species at the same time and locati...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Text |
Language: | English |
Published: |
2007
|
Subjects: | |
Online Access: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.404.6651 http://hal.archives-ouvertes.fr/docs/00/29/63/72/PDF/acp-7-5585-2007.pdf |
Summary: | Abstract. The chemistry climate model ECHAM5/MESSy1 (E5/M1) in a setup extending from the surface to 80 km with a vertical resolution of about 600 m near the tropopause with nudged tropospheric meteorology allows a direct comparison with satellite data of chemical species at the same time and location. Here we present results out of a transient 10 years simulation for the period of the Antarctic vortex split in September 2002, where data of MIPAS on the ENVISATsatellite are available. For the first time this satellite instrument opens the opportunity, to evaluate all stratospheric nitrogen containing species simultaneously with a good global coverage, including the source gas N2O and ozone which allows an estimate for NOx-production in the stratosphere. We show correlations between simulated and observed species in the altitude region between 10 and 50 hpa for different latitude belts, together with the Probability Density Functions (PDFs) of model results and observations. This is supplemented by global maps on pressure levels showing the comparison between the satellite and the simulated data sampled at the same time and location. We demonstrate that the model in most cases captures the partitioning in the nitrogen family, the diurnal cycles and the spatial distribution within experimental uncertainty. This includes even variations due to tropospheric clouds. There appears to be, however, a problem to reproduce the observed nighttime partitioning between N2O5 and NO2 in the middle stratosphere using the recommended set of reaction coefficients and photolysis data. 1 |
---|