Monitoring volcanic thermal anomalies from space: Size matters

Measuring temperatures on volcanoes from space provides important constraints on the transfer of mass and heat to the Earth's surface. Time series of multispectral infrared images, acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) between 2000 and 2009, were...

Full description

Bibliographic Details
Main Authors: Samuel William Murphy A, Carlos Roberto, Souza Filho
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.397.4781
http://hal.inria.fr/docs/00/58/74/20/PDF/Murphy-JVGR-2011.pdf
Description
Summary:Measuring temperatures on volcanoes from space provides important constraints on the transfer of mass and heat to the Earth's surface. Time series of multispectral infrared images, acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) between 2000 and 2009, were inspected to investigate fluctuations in thermal anomalies at both Mount Erebus (Antarctica) and Láscar volcano (Chile). Several thermal metrics were explored: i) maximum pixel temperatures above background, ii) the spatial extent of low, moderate and high temperature anomalies, and iii) the spatial extent of shortwave infrared anomalies. The maximum pixel temperature metric correlated to eruptive events at Láscar volcano yet displayed significant scatter at Erebus. The spatial extent of both temperature and short-wave infrared anomalies correlates well with eruptive activity at both volcanoes. Limited variation in the size of thermal anomalies was observed at Erebus throughout the time series due to the stability of a long-lived lava lake, with the exception of a seasonal expansion in low temperature anomalies associated with localized snow-melt at the peak. This finding