Summer sea surface temperature conditions in the North Atlantic and their impact upon the atmospheric circulation in early winter

The origin of the so-called summer North Atlantic ‘‘Horseshoe’ ’ (HS) sea surface temperature (SST) mode of variability, which is statistically linked to the next winter’s North Atlantic Oscillation (NAO), is investigated from data and experiments with the CCM3 atmospheric general circulation model...

Full description

Bibliographic Details
Main Authors: Christophe Cassou, Clara Deser, Laurent Terray, James W. Hurrell, Marie Drévillon
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.383.9326
http://www.cgd.ucar.edu/cas/cdeser/Docs/cassou.natlsst_atmcirc.jclim04.pdf
Description
Summary:The origin of the so-called summer North Atlantic ‘‘Horseshoe’ ’ (HS) sea surface temperature (SST) mode of variability, which is statistically linked to the next winter’s North Atlantic Oscillation (NAO), is investigated from data and experiments with the CCM3 atmospheric general circulation model (AGCM). Lagged observational analyses reveal a linkage between HS and anomalous rainfall in the vicinity of the Atlantic intertropical convergence zone. Prescribing the observed anomalous convection in the model generates forced atmospheric Rossby waves that propagate into the North Atlantic sector. The accompanying perturbations in the surface turbulent and radiative fluxes are consistent with forcing the SST anomalies associated with HS. It is suggested that HS can therefore be interpreted as the remote footprint of tropical atmospheric changes. The ARPEGE AGCM is then used to test if the persistence of HS SST anomalies from summer to late fall can feed back to the atmosphere and have an impact on the next winter’s North Atlantic variability. Observed HS SST patterns are imposed in the model from August to November. They generate a weak but coherent early winter response projecting onto the NAO and therefore reproduce the observed HS–NAO relationship obtained from lagged statistics. Changes in the simulated upper-level jet are associated with the anomalous HS meridional SST gradient and interact with synoptic eddy activity from October onward. The strength and position of the