Multiple Kernel Learning via Distance Metric Learning for Interactive Image Retrieval

Abstract. In this paper we formulate multiple kernel learning (MKL) as a distance metric learning (DML) problem. More specifically, we learn a linear combination of a set of base kernels by optimising two objective functions that are commonly used in distance metric learning. We first propose a glob...

Full description

Bibliographic Details
Main Authors: Fei Yan, Krystian Mikolajczyk, Josef Kittler
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
DML
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.377.825
http://xm2vtsdb.ee.surrey.ac.uk/CVSSP/Publications/papers/Yan-MCS-2011.pdf
Description
Summary:Abstract. In this paper we formulate multiple kernel learning (MKL) as a distance metric learning (DML) problem. More specifically, we learn a linear combination of a set of base kernels by optimising two objective functions that are commonly used in distance metric learning. We first propose a global version of such an MKL via DML scheme, then a localised version. We argue that the localised version not only yields better performance than the global version, but also fits naturally into the framework of example based retrieval and relevance feedback. Finally the usefulness of the proposed schemes are verified through experiments on two image retrieval datasets. 1