A comparison of the ECMWF forecast model with observations over the annual cycle at SHEBA.

A central objective of the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment was to provide a comprehensive observational test for single-column models of the atmosphere-sea ice-ocean system over the Arctic Ocean. For single-column modeling, one must specify the time-varying tendencies due...

Full description

Bibliographic Details
Main Authors: Bretherton De Roode, C. S. Bretherton, S. R. De Roode, C. Jakob, E. L Andreas, J. Intrieri, P. Ola, G. Persson
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2000
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.9608
Description
Summary:A central objective of the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment was to provide a comprehensive observational test for single-column models of the atmosphere-sea ice-ocean system over the Arctic Ocean. For single-column modeling, one must specify the time-varying tendencies due to horizontal and vertical advection of air through the column. Due to the difficulty of directly measuring these tendencies, it was decided for SHEBA to obtain them from short-range forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) global forecast model, into which SHEBA rawinsonde and surface synoptic observations were routinely assimilated. The quality of these forecasts directly affects the reliability of the derived advective tendencies. In addition, the ECMWF-forecast thermodynamic and cloud fields, and radiative and turbulent fluxes present an illuminating comparison of the SHEBA observations with a state-of-the-art global numerical model. The authors compare.