Summary

We present an overview of studies of anthropogenic pollutants in East Greenland polar bears over the period of 1999-2011. East Greenland polar bears are among the most polluted species, not just in the Arctic but globally, and represent an excellent biomonitoring species for levels and effects of gl...

Full description

Bibliographic Details
Main Authors: Christian Sonne, Robert J Letcher, Thea Ø Bechshøft, Frank F Rigét, Derek Cg Muir, Pall S Leifsson, Erik W Born, Lars Hyldstrup, Niladri Basu, Maja Kirkegaard, Rune Dietz
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2011
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.349.712
Description
Summary:We present an overview of studies of anthropogenic pollutants in East Greenland polar bears over the period of 1999-2011. East Greenland polar bears are among the most polluted species, not just in the Arctic but globally, and represent an excellent biomonitoring species for levels and effects of global pollution in an apex predator. Therefore, an international multidisciplinary team joined to monitor and assess the patterns and concentrations of contaminants and their potential negative impact on polar bears. The review showed that East Greenland polar bears are exposed to a mix of chlorinated, brominated and fluorinated organic compounds as well as mercury which are all known to have endocrine, immune and organ-system toxic properties. For example, the concentrations of PCBs (polychlorinated biphenyls) in blubber ranged approximately 800-21,000 ng/g lw while mercury concentrations in liver and kidney ranged 0.1-50 μg/g ww. Regarding health endpoints, bone density seemed to decrease as a function of time and OHC (organohalogen compound) concentrations and further T-score for adult males indicated risk for osteoporosis.The size of sexual organs decreased with increasing OHC concentrations. In the lower brain stem, mercury-associated decreases in NMDA-receptor levels and DNAmethylation was found The present review indicated that age was one of the major drivers for liver and renal lesions, although contaminants and infectious diseases may also play a role. Lesions in thyroid glands were most likely a result of infectious and genetic factors and probably, together with endocrine disrupting chemical (EDCs)