Integrated assessment of abrupt climatic changes

One of the most controversial conclusions to emerge from many of the first generation of integrated assessment models (IAMs) of climate policy was the perceived economic optimality of negligible near-term abatement of greenhouse gases. Typically, such studies were conducted using smoothly varying cl...

Full description

Bibliographic Details
Main Authors: Michael D. Mastr, Rea A, Stephen H. Schneider B
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2001
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.323.760
http://www.stanford.edu/~mikemas/publications/IntegratedAssessment.pdf
Description
Summary:One of the most controversial conclusions to emerge from many of the first generation of integrated assessment models (IAMs) of climate policy was the perceived economic optimality of negligible near-term abatement of greenhouse gases. Typically, such studies were conducted using smoothly varying climate change scenarios or impact responses. Abrupt changes observed in the climatic record and documented in current models could substantially alter the stringency of economically optimal IAM policies. Such abrupt climatic changes — or consequent impacts — would be less foreseeable and provide less time to adapt, and thus would have far greater economic or environmental impacts than gradual warming. We extend conventional, smooth IAM analysis by coupling a climate model capable of one type of abrupt change to a well-established energy–economy model (DICE). We compare the DICE optimal policy using the standard climate sub-model to our version that allows for abrupt change — and consequent enhanced climate damage — through changes in the strength (and possible collapse) of the North Atlantic thermohaline circulation (THC). We confirm the potential significance of abrupt climate change to economically optimal IAM policies, thus calling into question all previous work neglecting such possibilities — at the least for the wide ranges of relevant social and climate system parameters we consider. In addition, we obtain an emergent property of our coupled social–natural system model: “optimal policies ” that do consider abrupt changes may, under relatively low