Rapid Publication Vasoactive Intestinal Peptide, Forskolin, and Genistein Increase Apical CFTR Trafficking in the Rectal Gland of the Spiny Dogfish, Squalus acanthias Acute Regulation of CFTR Trafficking in an Intact Epithelium

Defective trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common cause of cystic fibrosis. In chloride-secreting epithelia, it is well established that CFTR localizes to intracellular organelles and to apical membranes. However, it is controversial whether s...

Full description

Bibliographic Details
Main Authors: Rüdiger W. Lehrich, Stephen G. Aller, Paul Webster, Christopher R. Marino, John N. Forrest
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.322.6237
http://edoc.mdc-berlin.de/5681/1/5681oa.pdf
Description
Summary:Defective trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common cause of cystic fibrosis. In chloride-secreting epithelia, it is well established that CFTR localizes to intracellular organelles and to apical membranes. However, it is controversial whether secretagogues regulate the trafficking of CFTR. To investigate whether acute hormonal stimulation of chloride secretion is coupled to the trafficking of CFTR, we used the intact shark rectal gland, a model tissue in which salt secretion is dynamically regulated and both chloride secretion and cellular CFTR immunofluorescence can be quantified in parallel. In rectal glands perfused under basal conditions without secretagogues, Cl � secretion was 151�65 �eq/h/g. Vasoactive intestinal peptide (VIP), forskolin, and genistein