cDNA cloning and characterization of a high affinity aryl hydrocarbon receptor in a cetacean, the beluga, Delphinapterus leucas. Toxicol Sci 64

Some cetaceans bioaccumulate substantial concentrations of planar halogenated aromatic hydrocarbons (PHAHs) in their tissues, but little is known about the effects of such burdens on cetacean health. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related PHAHs cause toxicity via activation of the ar...

Full description

Bibliographic Details
Main Authors: Brenda A. Jensen, Mark E. Hahn
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2001
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.321.8226
http://toxsci.oxfordjournals.org/content/64/1/41.full.pdf
Description
Summary:Some cetaceans bioaccumulate substantial concentrations of planar halogenated aromatic hydrocarbons (PHAHs) in their tissues, but little is known about the effects of such burdens on cetacean health. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related PHAHs cause toxicity via activation of the aryl hydrocarbon receptor (AHR), a member of the bHLH-PAS family of transcription factors. Differences in AHR structure and function are known to contribute to species-specific differences in susceptibility to PHAH toxicity. To ascertain the potential for PHAH effects in a cetacean, we characterized an AHR from the beluga whale, Delphinapterus leucas. The 3.2 kb cDNA encodes an 845-amino acid protein with a predicted size of 95.5 kDa. Overall, the beluga AHR shares 85 % amino acid sequence identity with the human AHR and 75 % identity with the mouse AHR Ah b–1 allele. Beluga AHR protein synthesized in a rabbit reticulocyte lysate system