IceCube: Performance, Status, and Future Carsten Rott a for the IceCube Collaboration ∗

High-energy neutrinos are uniquely suited to study a large variety of physics as they traverse the universe almost untouched, in contrast to conventional astronomical messengers like photons or cosmic rays which are limited by interactions with radiation and matter at high energies or deflected by a...

Full description

Bibliographic Details
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2006
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.317.303
http://arxiv.org/pdf/astro-ph/0611726v2.pdf
Description
Summary:High-energy neutrinos are uniquely suited to study a large variety of physics as they traverse the universe almost untouched, in contrast to conventional astronomical messengers like photons or cosmic rays which are limited by interactions with radiation and matter at high energies or deflected by ambient magnetic fields. Located at the South Pole, IceCube combined with its predecessor AMANDA comprise the world’s largest neutrino telescope. IceCube currently consists of nine strings, each containing 60 digital optical modules, deployed at depths of 1.5 to 2.5 km in the ice and an array of 16 surface air-shower stations. IceCube is expected to be completed in early 2011 at which time it will instrument a volume of one km 3 below the IceTop air-shower array covering an area of one km 2. The current IceCube detector performance is described and an outlook given into the large variety of physics that it can address, with an emphasis on the search for ultra-high-energy neutrinos which may shed light on the origins of the highest energy cosmic rays. 1.