ASPEN - Automated Planning and Scheduling for Space Mission Operations

This paper describes the ASPEN system for automation of planning and scheduling for space mission operations. ASPEN contains a number of innovations including: an expressive but easy to use modeling language, multiple search (inference) engines, iterative repair suited for mixed-initiative human in...

Full description

Bibliographic Details
Main Authors: S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt, D. Mutz, T. Estlin, B. Smith, F. Fisher, T. Barrett, G. Stebbins, D. Tran
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2000
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.6965
http://www.isi.edu/~blythe/cs541/Readings/aspen-spaceops00.pdf
Description
Summary:This paper describes the ASPEN system for automation of planning and scheduling for space mission operations. ASPEN contains a number of innovations including: an expressive but easy to use modeling language, multiple search (inference) engines, iterative repair suited for mixed-initiative human in loop operations, real-time replanning and response (in the CASPER system), and plan optimization. ASPEN is being used for the Citizen Explorer (CX-1) (August 2000 launch) and the 2 nd Antarctic Mapping Missions (AMM-2) (September 2000). ASPEN has also been used to automate ground communications stations -- automating generation of tracking plans for the Deep Space Terminal (DS-T). ASPEN has been used to demonstrate automated command generation and onboard planning for rovers and is currently being evaluated for operational use for the Mars-01 Marie Curie rover mission. CASPER, the soft real-time versions of ASPEN, has been demonstrated with the Jet Propulsion Laboratory (JPL) Mission Data S.