AATSR: Product Development and Intercomparison

Abstract: Models and observations show that the Arctic is experiencing the most rapid changes in global near-surface air temperature. We developed novel EASE-grid Level 3 (L3) land surface temperature (LST) products from Level 2 (L2) AATSR and MODIS data to provide weekly, monthly and annual LST mea...

Full description

Bibliographic Details
Main Authors: Pan-arctic L, Surface Temperature From Modis, Aiman Soliman, Claude Duguay, William Saunders, Sonia Hachem
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2012
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.296.2932
http://www.mdpi.com/2072-4292/4/12/3833/pdf/
Description
Summary:Abstract: Models and observations show that the Arctic is experiencing the most rapid changes in global near-surface air temperature. We developed novel EASE-grid Level 3 (L3) land surface temperature (LST) products from Level 2 (L2) AATSR and MODIS data to provide weekly, monthly and annual LST means over the pan-Arctic region at various grid resolutions (1–25 km) for the past decade (2000–2010). In this paper, we provide: (1) a review of previous validation of MODIS/AATSR L2; (2) a description of the processing chain of L3 products; (3) an assessment of the 25 km products uncertainty, and; (4) a quantification of the bias introduced by over-representing clear-sky days in MODIS L3 products. In addition, we generated uncertainty maps by comparing L3 products with LST from passive microwave sensors (AMSR-E and SSM/I) and the North American Regional Reanalysis (NARR). Results show a close correspondence between MODIS and AATSR monthly products with a mean-difference (MD) of −1.1 K. Comparing L3 products with NARR indicates a close agreement in summer and a systematic bias in winter, which is entirely negative with respect to MODIS L3 (MD: −3.6, Min: −6.8, Max: −1 K). Comparing monthly averaged MODIS L3 to NARR clear-sky to quantify over-representing clear-sky days indicates a decrease of winter and an increase of summer difference compared to NARR all-sky. Finally, we provide suggestions to improve LST retrieval over Arctic regions.