Unsupervised Class Separation of Multivariate Data through Cumulative Variance-based Ranking

Abstract—This paper introduces a new extension of outlier detection approaches and a new concept, class separation through variance. We show that accumulating information about the outlierness of points in multiple subspaces leads to a ranking in which classes with differing variance naturally tend...

Full description

Bibliographic Details
Main Authors: Andrew Foss, Osmar R. Zaïane, Sandra Zilles
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.231.3872
http://www2.cs.uregina.ca/%7Ezilles/fossZZ09.pdf
Description
Summary:Abstract—This paper introduces a new extension of outlier detection approaches and a new concept, class separation through variance. We show that accumulating information about the outlierness of points in multiple subspaces leads to a ranking in which classes with differing variance naturally tend to separate. Exploiting this leads to a highly effective and efficient unsupervised class separation approach, especially useful in the difficult case of heavily overlapping distributions. Unlike typical outlier detection algorithms, this method can be applied beyond the ‘rare classes ’ case with great success. Two novel algorithms that implement this approach are provided. Additionally, experiments show that the novel methods typically outperform other state-of-the-art outlier detection methods on high dimensional data such as Feature Bagging, SOE1, LOF, ORCA and Robust Mahalanobis Distance and competes even with the leading supervised classification methods. Keywords-Outlier Detection; Classification; Subspaces. I.