A Personal Supercomputer for Climate Research

We describe and analyze the performance of a cluster of personal computers dedicated to coupled climate simulations. This climate modeling system performs comparably to state-of-the-art supercomputers and yet is affordable by individual research groups, thus enabling more spontaneous application of...

Full description

Bibliographic Details
Main Authors: James C. Hoe, Chris Hill, Alistair Adcroft
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 1999
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.946
http://www.ece.cmu.edu/~jhoe/distribution/csgmemo/memo-425.ps.gz
Description
Summary:We describe and analyze the performance of a cluster of personal computers dedicated to coupled climate simulations. This climate modeling system performs comparably to state-of-the-art supercomputers and yet is affordable by individual research groups, thus enabling more spontaneous application of high-end numerical models to climate science. The cluster's novelty centers around the Arctic Switch Fabric and the StarT-X network interface, a system-area interconnect substrate developed at MIT. A significant fraction of the interconnect's hardware performance is made available to our climate model through an application-specific communication library. In addition to reporting the overall application performance of our cluster, we develop an analytical performance model of our application. Based on this model, we define a metric, Potential Floating-Pointing Performance, which we use to quantify the role of high-speed interconnects in determining application performance. Our results show that a highperformance interconnect, in conjunction with a light-weight application-specific library, provides efficient support for our fine-grain parallel application on an otherwise general-purpose commodity system.