Keywords: planetary surface exploration, Hyperion solar-power mobile robot, sun-synchronous navigation

Sun-synchronous navigation is accomplished by traveling opposite to planetary rotation, navigating with the sun, to remain continually in sunlight. At appropriate latitude and speed, solar-powered rovers can maintain continual exposure to solar radiation sufficient for sustained operation. We are pr...

Full description

Bibliographic Details
Main Authors: Ga Ti On, David Wettergreen, Benjamin Shamah, Paul Tompkins, William Whittaker
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2001
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.7046
http://www.ri.cmu.edu/pub_files/pub3/wettergreen_david_2001_1/wettergreen_david_2001_1.pdf
Description
Summary:Sun-synchronous navigation is accomplished by traveling opposite to planetary rotation, navigating with the sun, to remain continually in sunlight. At appropriate latitude and speed, solar-powered rovers can maintain continual exposure to solar radiation sufficient for sustained operation. We are prototyping a robot, named Hyperion, (Figure 1) for solar-powered operation in polar environments and developing sun-cognizant navigation methods to enable rovers to dodge shadows, seek sun, and drive sun-synchronous routes. We plan to conduct field experiments in a planetary-analog setting in the Canadian arctic to verify the algorithms that combine reasoning about sunlight and power with autonomous navigation and to validate parameters that will allow sun-synchronous explorers to be scaled for other planetary bodies. The paper provides a preliminary report on progress towards sun-synchronous navigation. 1