PROBLEM SET #6 TO: FROM: SUBJECT:

Mars is of great scientific interest given the potential evidence of past or present life. Recent evidence indicating the past existence of water deposits underscore its scientific value. Other motivations to go to Mars include studying its climate history through exploration of the polar layers. Th...

Full description

Bibliographic Details
Main Authors: Prof David Miller, Prof John Keesee, Ms, Marilyn Good
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.208.4744
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-851-satellite-engineering-fall-2003/assignments/ps6_cg_solution.pdf
Description
Summary:Mars is of great scientific interest given the potential evidence of past or present life. Recent evidence indicating the past existence of water deposits underscore its scientific value. Other motivations to go to Mars include studying its climate history through exploration of the polar layers. This information could be correlated with similar data from Antarctica to characterize the evolution of the Solar System and its geological history. Long-term goals might include the colonization of Mars. As the closest planet with a relatively mild environment, there exists a unique opportunity to explore Mars with humans. Although we have used robotic spacecraft successfully in the past to study Mars, humans offer a more efficient and robust exploration capability. However, human spaceflight adds both complexity and mass to the space vehicle and has a significant impact on the mission design. Humans require an advanced environmental control and life support system, and this subsystem has high power requirements thus directly affecting the power subsystem design. A Mars mission capability is likely to be a factor in NASA’s new launch architecture design since the resulting launch architecture will need take into account the estimated spacecraft mass required for such a mission. To design a Mars mission, various propulsion system options must be evaluated and compared for their efficiency and adaptability to the required mission duration. A tool that evaluates the design trades between