80 Annals of Glaciology 44 2006 Spatial variation of biogeochemical properties of landfast sea ice in the Gulf of Bothnia, Baltic Sea

ABSTRACT. Horizontal variation of landfast sea-ice properties was studied in the Gulf of Bothnia, Baltic Sea, during March 2004. In order to estimate their variability among and within different spatial levels, 72 ice cores were sampled on five spatial scales (with spacings of 10 cm, 2.5 m, 25 m, 25...

Full description

Bibliographic Details
Main Authors: M. Steffens, M. A. Granskog, H. Kaartokallio, H. Kuosa, K. Luodekari, S. Papadimitriou, D. N. Thomas
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.174.3063
http://www.bangor.ac.uk/%7Eoss102/Steffens_et_al_2006.pdf
Description
Summary:ABSTRACT. Horizontal variation of landfast sea-ice properties was studied in the Gulf of Bothnia, Baltic Sea, during March 2004. In order to estimate their variability among and within different spatial levels, 72 ice cores were sampled on five spatial scales (with spacings of 10 cm, 2.5 m, 25 m, 250 m and 2.5 km) using a hierarchical sampling design. Entire cores were melted, and bulk-ice salinity, concentrations of chlorophyll a (Chl a), phaeophytin (Phaeo), dissolved nitrate plus nitrite (DIN) as well as dissolved organic carbon (DOC) and nitrogen (DON) were determined. All sampling sites were covered by a 5.5–23 cm thick layer of snow. Ice thicknesses of cores varied from 26 to 58 cm, with bulkice salinities ranging between 0.2 and 0.7 as is typical for Baltic Sea ice. Observed values for Chl a (range: 0.8–6.0 mg Chl a L –1; median: 2.9 mg Chl a L –1) and DOC (range: 37–397 mM; median: 95 mM) were comparable to values reported by previous sea-ice studies from the Baltic Sea. Analysis of variance among different spatial levels revealed significant differences on the 2.5 km scale for ice thickness, DOC and Phaeo (with the latter two being positively correlated with ice thickness). For salinity and Chl a, the 250 m scale was found to be the largest scale where significant differences could be detected, while snow depth only varied significantly on the 25 m scale. Variability on the 2.5 m scale contributed significantly to the total variation for ice thickness, salinity, Chl a and DIN. In the case of DON, none of